Geometry Unit 6 Practice Test

1. Use the diagram to find \(m\angle DAF \) in circle A.

 \[m\angle DAF = \]

2. Use the diagram to find \(m\angle QRT \).

 \[x = \]

 \[m\angle QRT = \]

3. If \(m\angle BDC = 40 \), \(\text{arc } AB = 140 \), and \(\text{arc } CD = 110 \), find \(m\angle 1 \).

 \[m\angle 1 = \]

4. If \(m\angle 1 = 3x + 2 \), \(m\angle 2 = 5x \), find \(m\angle 1 \) for circle D.

 \[m\angle 1 = \]

5.

 \[x = \]
6. \[21^\circ \times x^\circ = \ldots\]

7. \[55^\circ \times x^\circ = \ldots\]

8. \[6^\circ \times x^\circ = \ldots\]

9. \[x = \ldots\]

10. \[x = \ldots\]

11. \[x = \ldots\]

12. \[x = \ldots\]
13. In circle O, $m\angle R = 23$. Find $m\angle O$. (The figure is not drawn to scale.)

$\angle O = \underline{\hspace{2cm}}$

14. Assume that lines that appear to be tangent are tangent. O is the center of the circle. Find the value of x, given: $m\angle O = 135$. (Figures are not drawn to scale.)

$x = \underline{\hspace{2cm}}$

15. In $\odot D$, $AB \cong CB$ and $m\ arc\ CE = 50$. Find $m\angle BCE$

$m\angle BCE = \underline{\hspace{2cm}}$

16. Find the value of the radius x. The figure is not drawn to scale.

$x = \underline{\hspace{2cm}}$

17. \overline{WZ} and \overline{XR} are diameters. Find the measure of arc ZWX.

18. The radius of circle O is 17, and $OC = 8$. Find AB.
19. Find $m\angle BAC$ in $\odot O$.

20. Write the standard equation for the circle with center $(2, 7), r = 4$.

21. Find the center and radius of the circle with equation $(x + 9)^2 + (y + 5)^2 = 64$.

Review Problems

22. Find the length of the missing side.

23. Solve for x and y.

24. Solve for x. Round to the nearest tenth.

25. Use the diagram below.

26. Find the area of the smaller sector if the circumference is 20π.